21 research outputs found

    Ownership and control in a competitive industry

    Get PDF
    We study a differentiated product market in which an investor initially owns a controlling stake in one of two competing firms and may acquire a non-controlling or a controlling stake in a competitor, either directly using her own assets, or indirectly via the controlled firm. While industry profits are maximized within a symmetric two product monopoly, the investor attains this only in exceptional cases. Instead, she sometimes acquires a noncontrolling stake. Or she invests asymmetrically rather than pursuing a full takeover if she acquires a controlling one. Generally, she invests indirectly if she only wants to affect the product market outcome, and directly if acquiring shares is profitable per se. --differentiated products,separation of ownership and control,private benefits of control

    BEM–FEM coupling for the analysis of flexible propellers in non-uniform flows and validation with full-scale measurements

    No full text
    The first part of the paper presents a partitioned fluid–structure interaction (FSI) coupling for the non-uniform flow hydro-elastic analysis of highly flexible propellers in cavitating and non-cavitating conditions. The chosen fluid model is a potential flow solved with a boundary element method (BEM). The structural sub-problem has been modelled with a finite element method (FEM). In the present method, the fully partitioned framework allows one to use another flow or structural solver. An important feature of the present method is the time periodic way of solving the FSI problem. In a time periodic coupling, the coupling iterations are not performed per time step but on a periodic level, which is necessary for the present BEM–FEM coupling, but can also offer an improved convergence rate compared to a time step coupled method. Thus, it allows to solve the structural problem in the frequency domain, meaning that any transients, which slow down the convergence process, are not computed. As proposed in the method, the structural equations of motion can be solved in modal space, which allows for a model reduction by involving only a limited number of mode shapes. The second part of the paper includes a validation study on full-scale. For the full-scale validation study a purposely designed composite propeller with a diameter of 1 m has been manufactured. Also an underwater measurement set-up including a stereo camera system, remote control of the optics and illumination system has been developed. The propeller design and the underwater measurement set-up are described in the paper. During sea trials blade deflections have been measured in three different positions. A comparison between measured and calculated torque shows that the measured torque is much larger than computed. This is attributed to the differences between effective and nominal wakefields, where the latter one has been used for the calculations. To correct for the differences between measured and computed torque the calculated pressures have been amplified accordingly. In that way the deformations which have been computed with the BEM–FEM coupling for non-uniform flows became very similar to the measured results.</p

    Boundary element modelling aspects for the hydro-elastic analysis of flexible marine propellers

    No full text
    Boundary element methods (BEM) have been used for propeller hydrodynamic calculations since the 1990s. More recently, these methods are being used in combination with finite element methods (FEM) in order to calculate flexible propeller fluid–structure interaction (FSI) response. The main advantage of using BEM for flexible propeller FSI calculations is the relatively low computational demand in comparison with higher fidelity methods. However, the BEM modelling of flexible propellers is not straightforward and requires several important modelling decisions. The consequences of such modelling choices depend significantly on propeller structural behaviour and flow condition. The two dimensionless quantities that characterise structural behaviour and flow condition are the structural frequency ratio (the ratio between the lowest excitation frequency and the fundamental wet blade natural frequency) and the reduced frequency. For both, general expressions have been derived for (flexible) marine propellers. This work shows that these expressions can be effectively used to estimate the dry and wet fundamental blade frequencies and the structural frequency ratio. This last parameter and the reduced frequency of vibrating blade flows is independent of the geometrical blade scale as shown in this work. Regarding the BEM-FEM coupled analyses, it is shown that a quasi-static FEM modelling does not suffice, particularly due to the fluid-added mass and hydrodynamic damping contributions that are not negligible. It is demonstrated that approximating the hydro-elastic blade response by using closed form expressions for the fluid added mass and hydrodynamic damping terms provides reasonable results, since the structural response of flexible propellers is stiffness dominated, meaning that the importance of modelling errors in fluid added mass and hydrodynamic damping is small. Finally, it is shown that the significance of recalculating the hydrodynamic influence coefficients is relatively small. This fact might be utilized, possibly in combination with the use of the closed form expressions for fluid added mass and hydrodynamic damping contributions, to significantly reduce the computation time of flexible propeller FSI calculationsShip Hydromechanics and Structure

    A new approach for computing the steady state fluid–structure interaction response of periodic problems

    No full text
    A special type of fluid–structure interaction (FSI) problems are problems with periodic boundary conditions like in turbomachinery. The steady state FSI response of these problems is usually calculated with similar techniques as used for transient FSI analyses. This means that, when the fluid and structure problem are not simultaneously solved with a monolithic approach, the problem is partitioned into a fluid and structural part and that each time step coupling iterations are performed to account for strong interactions between the two sub-domains. This paper shows that a time-partitioned FSI computation can be very inefficient to compute the steady state FSI response of periodic problems. A new approach is introduced in which coupling iterations are performed on periodic level instead of per time step. The convergence behaviour can be significantly improved by implementing existing partitioned solution methods as used for time step coupling (TSC) algorithms in the time periodic coupling (TPC) framework. The new algorithm has been evaluated by comparing the convergence behaviour to TSC algorithms. It is shown that the number of fluid–structure evaluations can be considerably reduced when a TPC algorithm is applied instead of a TSC. One of the most appealing advantages of the TPC approach is that the structural problem can be solved in the frequency domain resulting in a very efficient algorithm for computing steady state FSI responses.Accepted Author ManuscriptShip Hydromechanics and Structure

    Mode-III fatigue of welded joints in steel maritime structures: Weld notch shear stress distributions and effective notch stress based resistance

    No full text
    The predominant mode-I response of maritime structures can be multiaxial, involving out-of-plane mode-III shear components. Semi-analytical mode-III notch stress distribution formulations have been established for critical details like welded T-joints and cruciform joints, reflecting (non-)symmetry with respect to half the plate thickness. Using a stress distribution formulation based effective notch stress as fatigue strength criterion, the mode-III welded joint mid-cycle fatigue resistance characteristics have been investigated. In comparison to mode-I, the material characteristic length and resistance curve slope estimate suggest the fatigue damage process to be even more an initiation related near-surface phenomenon. Mean shear stress effects seem insignificant.Ship Hydromechanics and Structure

    Finite element modelling and model updating of small scale composite propellers

    No full text
    The application of composite materials in marine propellers is a relatively recent innovation. Methods have been presented to analyse the hydro-elastic behaviour of these type of propellers and in some studies these methods have been validated as well. Differences between measured and predicted responses are typically explained from inaccuracies in structural or fluid modelling. It is beyond all doubt that for an accurate finite element (FE) model a correct modelling of the fibre orientations and material properties is required. Both subjects are addressed in this work. An approach is presented in order to accurately define the element dependent fibre orientations in doubly curved geometries like (marine) propeller blades. In order to improve the structural response prediction this paper presents an inverse method based on experimental and numerical results which can be used for structural identification and FE model updating. In the developed approach the residual between measurement results obtained with static experiments and results obtained with an FE model is minimized by adapting the stiffness properties in the FE calculation. This method has been successfully applied to two small scale composite propellers. The obtained material properties have been determined with a relatively high confidence level. A verification by means of measured and calculated eigenfrequencies show also that accurate results are obtained with the inverse method. Therefore, this paper gives a positive answer on the research question whether it is possible to determine the stiffness properties of small scale composite marine propeller blades from a static experimental data.Accepted Author ManuscriptShip Hydromechanics and Structure

    Validation of the corrected Dang Van multiaxial fatigue criterion applied to turret bearings of FPSO offloading buoys

    No full text
    In engineering practice, multiaxial fatigue analyses are often avoided due to their complexity and computational intensity. However, damages have been encountered in turret bearings of Floating Production Storage and Offloading vessel (FPSO) offloading buoys which were likely caused by multiaxial fatigue. The Dang Van criterion has often been used to assess problems with multiaxial fatigue in rolling contacts. Therefore, this study set out to validate the application of the Dang Van criterion to turret bearings of FPSO offloading buoys. For this purpose, the criterion was corrected with a horizontal conservative locus for compressive hydrostatic stresses. Three load cases were identified based on the seakeeping analysis of an FPSO offloading buoy equipped with a wheel-rail turret bearing. For each load case, the surface pressure distribution and sub-surface stress states were determined analytically. Staircase tests were used to determine the characteristic parameters (α and ÎČ) of the Dang Van curve. Then, the Dang Van criterion was corrected and used to perform a multiaxial fatigue analysis in the critically stressed area of the wheel-rail contact. Finally, full-scale, long-duration fatigue tests were used to validate the results. The corrected Dang Van criterion shows agreement with the experimental results and is not rejected as multiaxial fatigue criterion for application to turret bearings in FPSO offloading buoys.Accepted Author ManuscriptShip Hydromechanics and Structure

    Stretch-Based Hyperelastic Material Formulations for Isogeometric Kirchhoff–Love Shells with Application to Wrinkling

    No full text
    Modelling nonlinear phenomena in thin rubber shells calls for stretch-based material models, such as the Ogden model which conveniently utilizes eigenvalues of the deformation tensor. Derivation and implementation of such models have been already made in Finite Element Methods. This is, however, still lacking in shell formulations based on Isogeometric Analysis, where higher-order continuity of the spline basis is employed for improved accuracy. This paper fills this gap by presenting formulations of stretch-based material models for isogeometric Kirchhoff–Love shells. We derive general formulations based on explicit treatment in terms of derivatives of the strain energy density functions with respect to principal stretches for (in)compressible material models where determination of eigenvalues as well as the spectral basis transformations is required. Using several numerical benchmarks, we verify our formulations on invariant-based Neo-Hookean and Mooney–Rivlin models and with a stretch-based Ogden model. In addition, the model is applied to simulate collapsing behaviour of a truncated cone and it is used to simulate tension wrinkling of a thin sheet.<br/

    Comparative study of multiaxial fatigue methods applied to welded joints in marine structures

    Get PDF
    Marine structures are particularly prone to action of waves, winds and currents with stochastically varying composition, intensities and directions. Therefore, resultant stresses may cause multiaxial fatigue in specific welded structural details. For the assessment of multiaxial fatigue in welded joints, a wide variety of methods have been suggested. However, there is still no consensus on a method which can correctly account for non-proportional and variable amplitude loading. This paper beholds a comparative study of multiaxial fatigue methods applicable for design of marine structures. For the purpose of comparison several load cases were defined including non-proportional and variable amplitude loadings with different normal and shear stress amplitude ratios. Three types of methods are compared: those described by three different codes (i.e. Eurocode 3, IIW and DNV-GL), those described by three different multiaxial fatigue approaches from literature (i.e. Modified Carpinteri-Spagnoli Criterion, Modified Wohler Curve Method and Effective Equivalent Stress Hypothesis) and an approach based on Path-Dependent-Maximum-Range multiaxial cycle counting. From this study it has been concluded that non-proportional variable amplitude loading has a significant negative impact on the fatigue lifetime estimates, and that further research and experimental testing are essential to come to a consensus.Ship Hydromechanics and Structure

    Fatigue design of welded double-sided T-joints and double-sided cruciform joints in steel marine structures: A total stress concept

    No full text
    Fatigue is a governing design limit state for marine structures. Welded joints are important in that respect. The weld notch stress (intensity) distributions contain essential information and formulations have been established to obtain a total stress fatigue damage criterion and corresponding fatigue resistance curve; a total stress concept. However, the involved weld load carrying stress model does not provide the required estimates and trends for varying geometry dimensions and loading &amp; response combinations. A new one has been developed and performance evaluation for T-joints and cruciform joints in steel marine structures shows that in comparison with the nominal stress, hot spot structural stress and effective notch stress concept based results up to 50% more accurate fatigue design life time estimates can be obtained. Taking advantage of the weld notch stress formulations, the effective notch stress concept performance has improved adopting a stress-averaged criterion rather than a fictitious notch radius-based one.Ship Hydromechanics and StructuresMarine and Transport Technolog
    corecore